
ENTROPIC OPTIMAL TRANSPORT:

CONVERGENCE OF POTENTIALS

MARCEL NUTZ AND JOHANNES WIESEL

Abstract. We study the potential functions that determine the optimal density
for ε-entropically regularized optimal transport, the so-called Schrödinger poten-
tials, and their convergence to the counterparts in classical optimal transport,
the Kantorovich potentials. In the limit ε→ 0 of vanishing regularization, strong
compactness holds in L1 and cluster points are Kantorovich potentials. In par-
ticular, the Schrödinger potentials converge in L1 to the Kantorovich potentials
as soon as the latter are unique. These results are proved for all continuous, in-
tegrable cost functions on Polish spaces. In the language of Schrödinger bridges,
the limit corresponds to the small-noise regime.

1. Introduction and Main Result

Let (X , µ) and (Y, ν) be Polish probability spaces and Π(µ, ν) the set of all
couplings; i.e., probability measures π on X × Y with first marginal µ and second
marginal ν. Moreover, let c : X × Y → R+ be continuous with

(1.1)

∫
c(x, y)µ(dx)ν(dy) <∞.

Given a constant ε > 0, the entropic optimal transport (EOT) problem is

(1.2) Iε := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy) + εH(π|µ⊗ ν),

where H( · |µ⊗ ν) denotes relative entropy with respect to the product measure,

H(π|µ⊗ ν) :=

{∫
log( dπ

d(µ⊗ν)) dπ, π � µ⊗ ν,
∞, π 6� µ⊗ ν.

For ε = 0 we recover the Monge–Kantorovich optimal transport problem, and (1.2)
can be seen as its entropic regularization with parameter ε > 0. The minimiza-
tion (1.2) admits a unique solution πε ∈ Π(µ, ν); moreover, πε ∼ µ ⊗ ν and its
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density is of the form

(1.3)
dπε

d(µ⊗ ν)
(x, y) = exp

(
fε(x) + gε(y)− c(x, y)

ε

)
for two measurable functions fε : X → R and gε : Y → R. We call these functions
the Schrödinger potentials. They are unique up to normalization: any constant can
be added to fε and subtracted from gε. The integrability (1.1) of c implies that
fε ∈ L1(µ) and gε ∈ L1(ν), and we enforce the symmetric normalization

(1.4)

∫
fε(x)µ(dx) =

∫
gε(y) ν(dy)

to have uniqueness of the potentials in all that follows. We mention that πε can be
characterized as the unique coupling π ∈ Π(µ, ν) whose density is of the form (1.3).
See, for instance, [16, Statements 3.6, 3.15, 3.19, 3.38] for existence and uniqueness,
or [21] for a simple derivation including integrability under (1.1). These result
heavily build on [5, 6, 11, 26], among others. Rewriting the minimization (1.2), the
coupling πε can be interpreted as the so-called static Schrödinger bridge

(1.5) πε = arg min
π∈Π(µ,ν)

H(π|R)

for the reference probability dR ∝ e−c/εd(µ⊗ν) which elucidates (1.3) as the factor-

ization property dπε
dR (x, y) = efε(x)/εegε(y)/ε =: F (x)G(y).1 A closely related, more

analytic way to characterize the potentials are the Schrödinger equations. Writing
also C(x, y) = e−c(x,y)/ε, the fact that πε of (1.3) is in Π(µ, ν) implies that (F,G)
solves the coupled equations
(1.6)

F (x)−1 =

∫
G(y)C(x, y) ν(dy) µ-a.s., G(x)−1 =

∫
F (y)C(x, y) ν(dx) ν-a.s.

Conversely, we can use any solution (F,G) to define a coupling with density of the
form (1.4). This coupling must coincide with πε by the aforementioned uniqueness,
and then (ε logF, ε logG) must be our Schrödinger potentials (fε, gε), up to nor-
malization. We refer to [4, 25] and the references therein for more on Schrödinger
equations, and to [15, 19] for extensive surveys on Schrödinger bridges.

Yet another way to introduce the potentials is to consider the dual problem
of (1.2) in the sense of convex analysis,

Sε := sup
f∈L1(µ),g∈L1(ν)

(∫
f(x)µ(dx) +

∫
g(y) ν(dy)

− ε
∫
e
f(x)+g(y)−c(x,y)

ε µ(dx)ν(dy) + ε

)
.

(1.7)

1We mention that [19] uses the term Schrödinger potentials for fε/ε, gε/ε in the Schrödinger
bridge context, as is natural when no parameter ε is present. On the other hand, calling fε, gε
potentials is more convenient in our setting, well motivated by the connection with Kantorovich
potentials in Theorem 1.1, and consistent with the terminology in [17].
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Then (fε, gε) is the unique solution of (1.7) with the normalization (1.4). Indeed,
direct arguments show the weak duality Sε ≤ Iε. To see that equality is attained
by (fε, gε) and πε, we plug in (1.3) and use πε(X × Y) = 1 to find that Sε ≥∫
fε(x)µ(dx) +

∫
gε(y) ν(dy) ≥ Iε. Uniqueness holds by strict concavity. See [23]

and the references therein for a convex analysis perspective including (1.7).
We are interested in the relation of (fε, gε) to solutions of the dual Monge–

Kantorovich problem,

S0 := sup
f∈L1(µ), g∈L1(ν), f⊕g≤c

(∫
f(x)µ(dx) +

∫
g(y) ν(dy)

)
,(1.8)

where (f ⊕g)(x, y) := f(x)+g(y). It is well known that S0 = I0 and that a solution
(f0, g0) exists [27, Theorem 5.10, Remark 5.14]. (In fact, Theorem 1.1 below yields
another proof as a by-product.) There is the same ambiguity as above, and to
streamline terminology, we call (f0, g0) Kantorovich potentials if they satisfy the
normalization (1.4) for ε = 0. As (1.8) lacks the strict convexity of (1.7), multiple
Kantorovich potentials may exist even after normalization, for instance when both
marginals are discrete. Nevertheless, uniqueness of Kantorovich potentials is known
to hold for most problems of interest to us, especially when c is differentiable and
at least one marginal support is connected. See for instance [3, Appendix B] for
sufficient conditions.

Much of the enormous recent interest in entropic optimal transport stems from
the success of Sinkhorn’s algorithm in high-dimensional problems, enabling data-
rich applications in areas like machine learning or image processing. Popular-
ized in this context by [12], Sinkhorn’s algorithm computes the Schrödiger poten-
tials (fε, gε) by alternating projections. From a computational point of view, the
Monge–Kantorovich problem is significantly harder than the entropic one; see [24]
for a recent survey and numerous references. It is therefore natural to investigate
(fε, gε) as ε→ 0 to approximate Kantorovich potentials.

On the primal side, weak compactness of Π(µ, ν) immediately implies that (πε)
admits cluster points as ε→ 0. Moreover, any cluster point is an optimal transport,
so that if uniqueness is known for the solution π0 of the limiting optimal transport
problem, then πε → π0. See [8, 18] for proofs by Gamma convergence, or [3] for a
geometric proof assuming only continuity of c. Our aim is to establish a comparable
result on the dual side. Here, compactness is not obvious (unless µ, ν are compactly
supported). Our main result provides strong compactness in L1 for (fε) and (gε) as
ε→ 0, and moreover, that cluster points are Kantorovich potentials. In most cases
of interest, the latter are unique, so that the whole sequence converges.

Theorem 1.1. Let (fε, gε) be the unique Schrödinger potentials for ε > 0.

(a) Given εn → 0, there is a subsequence (εk) such that fεk converges in L1(µ)
and gεk converges in L1(ν).

(b) If limn fεn = f µ-a.s. and limn gεn = g ν-a.s. for εn → 0, then (f, g) are
Kantorovich potentials and the convergence also holds in L1.

If the Kantorovich potentials (f0, g0) for (1.8) are unique, it follows that limε fε = f0

in L1(µ) and limε gε = g0 in L1(ν).
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Applications of interest for Theorem 1.1 include costs c(x, y) = ‖x− y‖2 on X =
Y = Rd with unbounded marginal supports as in [20]; here c is continuous but not
uniformly continuous. Theorem 1.1 simplifies substantially in the case of compactly
supported marginals. More generally, if c is uniformly continuous, the functions
fε, gε inherit its modulus of continuity (uniformly in ε) and then uniform convergence
on compact subsets along a subsequence follows from the Arzelà–Ascoli theorem; cf.
Proposition 3.2. A result along those lines is contained in [17, Section 5] in the partic-
ular case of quadratic cost and compact marginals. We emphasize that [17] analyzes
the more complex dynamic problem of approximating W2 geodesics with entropic
interpolation; the present static setting would correspond only to its marginals at
times t = 0, 1. Given the results of [17], one may conjecture that Theorem 1.1 can
be extended to interpolations and intermediate times t ∈ (0, 1).

When X ,Y are finite sets, optimal transport is a finite-dimensional linear pro-
gramming problem. For such problems, a detailed convergence analysis of entropic
regularization is presented in [9]. In particular, convergence holds even when Kan-
torovich potentials are not unique.

Theorem 1.1 can be related to the large deviations principle (LDP) of [3] which
describes the convergence of (πε) on the primal side (cf. Section 4 for a detailed dis-
cussion). On compact spaces, convergence of potentials is equivalent to the validity
of an LDP whose rate functions includes the limiting Kantorovich potentials. On
the other hand, neither result implies the other in general, and we see the results
and methods as complementary. Indeed, the “easier” inequality for the present dual
approach corresponds to the more delicate one in the primal approach, and vice
versa. See also [10, 22] for expansions of the entropic transport cost as ε→ 0, which
are related to the speed of convergence of (πε). Finally, we mention [2], studying the
convergence of the discrete Sinkhorn algorithm to an optimal transport potential
in the joint limit when εn → 0 and the marginals µ, ν are approximated by dis-
cretizations µn, νn satisfying a certain density property. Beyond the aforementioned
special cases and connections, Theorem 1.1 is novel, to the best of our knowledge.

Two extensions of Theorem 1.1 are obtained in the body of the text. The first
one replaces c in (1.2) by a cost function cε that may depend on ε and converges
to the continuous cost c of the Monge–Kantorovich problem as ε → 0. This exten-
sion demonstrates the stability of the convergence in Theorem 1.1. In addition, it
may be a natural result from the perspective of Schödinger bridges (see [19]): the
corresponding reference measures Rε in (1.5) are those with large deviations rate c.
The second extension replaces the two marginals (µ, ν) by any (finite) number of
marginals. The resulting “multimarginal” optimal transport problem has become a
focus of attention as the primary tool to analyze Wasserstein barycenters in the sense
of [1]. Its entropic regularization again admits a version of Sinkhorn’s algorithm;
see [7] for a very recent analysis showing linear convergence and further references.
The techniques developed in the proof of Theorem 1.1 are quite versatile and extend
to the multimarginal setting without effort.

The remainder of this paper is organized as follows. Section 2 collects auxiliary
results for the proof of Theorem 1.1, which is carried out in Section 3 and followed
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by the specialization to uniformly continuous costs. The relation with the LDP is
the subject of Section 4. In Section 5 we present the extension to costs cε that vary
with ε, and Section 6 concludes with the multimarginal case.

2. Auxiliary Results

In this section we collect a number of auxiliary results for the proof of Theo-
rem 1.1. Anticipating the generalization in Section 5, we remark that the statements
and proofs in this section hold for any measurable (but not necessarily continuous)
cost function c : X × Y → R+ that is integrable in the sense of (1.1); further
regularity is only required in Lemma 2.6, where the condition is stated explicitly.

Let ε > 0. We recall the Schrödinger potentials fε ∈ L1(µ) and gε ∈ L1(ν) from
the Introduction and in particular the normalization

(2.1)

∫
fε(x)µ(dx) =

∫
gε(y) ν(dy) = Sε/2 ≥ 0.

The fact that πε of (1.3) is a probability measure with marginals µ and ν implies∫
e
fε(x)+gε(y)−c(x,y)

ε ν(dy) = 1 µ-a.s.,

∫
e
fε(x)+gε(y)−c(x,y)

ε µ(dx) = 1 ν-a.s.(2.2)

and hence the Schrödinger equations

fε(x) = −ε log

∫
e
gε(y)−c(x,y)

ε ν(dy) µ-a.s.,

gε(y) = −ε log

∫
e
fε(x)−c(x,y)

ε µ(dx) ν-a.s.

(2.3)

By choosing versions of fε, gε we may and will assume that these conjugacy relations
hold everywhere on X ×Y. In particular, this provides canonical extensions of fε, gε
to the whole marginal space. The conjugacy relations can also be used to obtain a
priori estimates, as has been previously exploited in [7, 14], among others.

Lemma 2.1. For all x ∈ X and y ∈ Y, we have

inf
y∈Y

[
c(x, y)− gε(y)

]
≤ fε(x) ≤

∫
c(x, y) ν(dy),

inf
x∈X

[
c(x, y)− fε(x)

]
≤ gε(y) ≤

∫
c(x, y)µ(dx).

Proof. Using (2.3), Jensen’s inequality and (2.1),

fε(x) = −ε log

∫
e
gε(y)−c(x,y)

ε ν(dy)

≤
∫

[−gε(y) + c(x, y)] ν(dy) ≤
∫
c(x, y) ν(dy),

(2.4)
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which is the upper bound. For the lower bound we note that by (2.3),

fε(x) ≥ −ε log

∫
e

supy∈Y [gε(y)−c(x,y)]
ε ν(dy)

= − sup
y∈Y

[
gε(y)− c(x, y)

]
= inf

y∈Y

[
c(x, y)− gε(y)

]
.

The proof for gε is symmetric. �

Let (M,d) be a metric space. A function ω : R+ → R+ is a modulus of continuity
if it is continuous at 0 with ω(0) = 0. More generally, we call ω : M × R+ → R+

a modulus of continuity if ω(x, ·) has those properties for each x ∈ M . A function
F : M → R is ω-continuous if it admits the modulus of continuity ω(x, ·) at x ∈M ;
that is, |F (x)−F (x′)| ≤ ω(x, d(x, x′)) for all x, x′ ∈M . To avoid ambiguity, we say
that F is uniformly ω-continuous if ω can be chosen independent of x. The following
generalization of the Arzelà–Ascoli theorem will be used to construct limits of fε
and gε.

Lemma 2.2. Let (M,d) be a separable metric space and let (Fn) be (arbitrary)
functions on M which are pointwise bounded and satisfy

|Fn(x1)− Fn(x2)| ≤ ω(x1, d(x1, x2)) + hn, x1, x2 ∈M(2.5)

for some modulus of continuity ω : M × R+ → R+ and a sequence hn → 0 of con-
stants. Then after passing to a subsequence, (Fn) converges uniformly on compact
subsets to a ω-continuous function F : M → R.

Proof. Let D ⊂M be a countable dense set, fix δ > 0 and choose n0 ∈ N such that
hn ≤ δ/6 for all n ≥ n0. As (Fn) is pointwise bounded, a diagonal argument yields a
subsequence, still denoted (Fn), converging pointwise on D. In particular, for every
x ∈ D there exists n(x) such that

|Fn(x)− Fm(x)| ≤ δ/3, m, n ≥ n(x).(2.6)

For x1 ∈ D, (2.5) yields an open neighborhood Ox1 with

|Fn(x1)− Fn(x2)| ≤ ω(x1, d(x1, x2)) + hn ≤ δ/6 + δ/6 = δ/3, x2 ∈ Ox1 ,(2.7)

for all n ≥ n0. Let K ⊂M be compact and D′ ⊆ D a finite set such that
⋃
x′∈D′ Ox′

covers K. Choose n1 := maxx′∈D′ n(x′) ∨ n0, then as any x ∈ K is contained in an
open neighborhood Ox′ of some x′ ∈ D′, we obtain from (2.6) and (2.7) that

|Fn(x)− Fm(x)| ≤ |Fn(x)− Fn(x′)|+ |Fn(x′)− Fm(x′)|+ |Fm(x′)− Fm(x)| ≤ δ,

for all x ∈ K and m,n ≥ n1. Thus (Fn) has a limit F , uniformly on compacts.
Passing to the limit in (2.5) shows that F is ω-continuous. �

Recall that c : X ×Y → R+ is continuous. If Ycpt ⊂ Y is compact and ω(x, r) :=
supy∈Ycpt,d(x,x′)≤r |c(x, y)− c(x′, y)|, then ω is a modulus of continuity in the above
sense. That motivates the following estimates.
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Lemma 2.3. Fix δ ∈ (0, 1) and ε > 0. There exist compact sets Xcpt ⊆ X ,Ycpt ⊆ Y
and measurable sets Aε ⊆ Xcpt, Bε ⊆ Ycpt with µ(Aε), ν(Bε) ≥ 1− δ such that

|fε(x1)− fε(x2)| ≤ sup
y∈Ycpt

|c(x1, y)− c(x2, y)| − ε log(1− δ) for x1, x2 ∈ Aε,

|gε(y1)− gε(y2)| ≤ sup
x∈Aε

|c(x, y1)− c(x, y2)| − ε log(1− δ)

≤ sup
x∈Xcpt

|c(x, y1)− c(x, y2)| − ε log(1− δ) for y1, y2 ∈ Bε.

Proof. Fix κ ∈ (0, δ), to be determined later. Choose compacts Xcpt and Ycpt with
µ(Xcpt) ≥ 1− κ2/2 and ν(Ycpt) ≥ 1− κ2/2, then πε ∈ Π(µ, ν) implies

πε(Xcpt × Ycpt) ≥ 1− κ2.(2.8)

Consider the set

Aε =

{
x ∈ Xcpt :

∫
Ycpt

e
fε(x)+gε(y)−c(x,y)

ε ν(dy) ≥ 1− κ

}
;

we claim that its complement Acε = X \Aε satisfies

pε := µ (Acε) ≤ κ.(2.9)

Indeed, (2.2) yields∫
Ycpt

e
fε(x)+gε(y)−c(x,y)

ε ν(dy) ≤
∫
e
fε(x)+gε(y)−c(x,y)

ε ν(dy) = 1(2.10)

and thus

1− κ2
(2.8)

≤ πε(Xcpt × Ycpt) =

∫
Xcpt

∫
Ycpt

e
fε(x)+gε(y)−c(x,y)

ε ν(dy)µ(dx)

≤
∫
Acε

∫
Ycpt

e
fε(x)+gε(y)−c(x,y)

ε ν(dy)µ(dx)

+

∫
Aε

∫
Ycpt

e
fε(x)+gε(y)−c(x,y)

ε ν(dy)µ(dx)

(2.10)

≤ (1− κ)pε + (1− pε) = 1− pεκ,

which implies (2.9). Next, we observe from the definition of Aε and (2.10) that for
x ∈ Aε,

−ε

(
log

∫
Ycpt

e
gε(y)−c(x,y)

ε ν(dy)− log(1− κ)

)
≤ fε(x)

≤ −ε log

∫
Ycpt

e
gε(y)−c(x,y)

ε ν(dy).

(2.11)
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Let x1, x2 ∈ Aε and assume without loss of generality that fε(x1) ≥ fε(x2). Then

|fε(x1)− fε(x2)|
(2.11)

≤ ε

(
log

∫
Ycpt

e
gε(y)−c(x2,y)

ε ν(dy)− log(1− κ)

)

− ε log

∫
Ycpt

e
gε(y)−c(x1,y)

ε ν(dy)

= ε log

∫
Ycpt

e
c(x1,y)−c(x2,y)+gε(y)−c(x1,y)

ε ν(dy)− ε log(1− κ)

− ε log

∫
Ycpt

e
gε(y)−c(x1,y)

ε ν(dy)

≤ ε log

(
e

supy∈Ycpt |c(x1,y)−c(x2,y)|

ε

∫
Ycpt

e
gε(y)−c(x1,y)

ε ν(dy)

)

− ε log(1− κ)− ε log

∫
Ycpt

e
gε(y)−c(x1,y)

ε ν(dy)

= sup
y∈Ycpt

|c(x1, y)− c(x2, y)| − ε log(1− κ).

(2.12)

This concludes the proof of the first estimate in the lemma.
Turning to the second, note that by (2.8), (2.9) and the definition of Aε,

πε(Aε × Ycpt) ≥ πε(Xcpt × Ycpt)− πε(X \Aε × Ycpt)

≥ 1− κ2 −
∫
Acε

∫
Ycpt

e
fε(x)+gε(y)−c(x,y)

ε ν(dy)µ(dx)

≥ 1− κ2 − κ(1− κ) = 1− κ = 1− δ2,

(2.13)

where we chose κ := δ2 (ensuring κ ∈ (0, δ), in particular). Define

Bε =

{
y ∈ Ycpt :

∫
Aε

e
fε(x)+gε(y)−c(x,y)

ε µ(dx) ≥ 1− δ
}
.

Arguing as for (2.9) and (2.11), now using (2.13) instead of (2.8), we see that
ν(Bc

ε) ≤ δ and that for y ∈ Bε,

−ε
(

log

∫
Aε

e
fε(x)−c(x,y)

ε µ(dx)− log(1− δ)
)
≤ gε(y)

≤ −ε log

∫
Aε

e
fε(x)−c(x,y)

ε µ(dx).

We conclude the proof by arguing as in (2.12) but with fε, κ replaced by gε, δ. �

The following extension lemma is a variation on Kirszbraun’s theorem. Recall
that a pseudometric d̃ is defined like a metric except that d̃(x, y) = 0 need not
imply x = y.
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Lemma 2.4. Let (M, d̃) be a pseudometric space and A ⊆ M . Let F : A → R
satisfy

|F (x1)− F (x2)| ≤ d̃(x1, x2) + γ, x1, x2 ∈ A,(2.14)

for some γ > 0. Then the function F̃ : M → R defined by

F̃ (x) := inf
x′∈A

[
F (x′) + d̃(x, x′) + γ1{x′ 6=x}

]
, x ∈M

satisfies F̃ = F on A and

|F̃ (x1)− F̃ (x2)| ≤ d̃(x1, x2) + γ, x1, x2 ∈M.(2.15)

Proof. Fix x ∈ A. For x 6= x′ ∈ A we have by (2.14) that

F (x′) + d̃(x, x′) + γ ≥ F (x)− d̃(x, x′)− γ + d̃(x, x′) + γ = F (x).

It follows that F̃ (x) = F (x), showing the first claim. Fix κ > 0 and let x1, x2 ∈M .

By the definition of F̃ (x2) there exists x′ ∈ A such that F̃ (x2) ≥ F (x′)+d̃(x2, x
′)−κ,

and now the definition of F̃ (x1) yields

F̃ (x1)− F̃ (x2) ≤ F (x′) + d̃(x1, x
′) + γ − F (x′)− d̃(x2, x

′) + κ

= d̃(x1, x
′)− d̃(x2, x

′) + γ + κ ≤ d̃(x1, x2) + γ + κ.

As κ > 0 was arbitrary, (2.15) follows. �

The next two lemmas show that limits of fε, gε must be Kantorovich potentials.

Lemma 2.5. Let εn → 0 and suppose that the corresponding potentials fεn , gεn
converge a.s. Then the limits f := limn fεn and g := limn gεn satisfy

f(x) + g(y) ≤ c(x, y) µ⊗ ν-a.s.

Proof. Let δ > 0. Passing to a subsequence if necessary, we may assume that∑∞
n=1 e

−δ/εn <∞. Define

Aδ,n = {(x, y) : fεn(x) + gεn(y)− c(x, y) ≥ δ} ,

then

1
(2.2)
=

∫
e
fεn (x)+gεn (y)−c(x,y)

εn µ(dx)ν(dy) ≥
∫
Aδ,n

e
fn(x)+gn(y)−c(x,y)

εn µ(dx)ν(dy)

≥ eδ/εn(µ⊗ ν)(Aδ,n)

yields (µ ⊗ ν)(Aδ,n) ≤ e−δ/εn and thus
∑

n(µ ⊗ ν)(Aδ,n) < ∞. The Borel–Cantelli
lemma now shows that (µ⊗ ν)(lim supnAδ,n) = 0 and hence

f(x) + g(y) ≤ c(x, y) + δ µ⊗ ν-a.s.

As δ > 0 was arbitrary, the claim follows. �
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Lemma 2.6. Let c be upper semicontinuous and f, g measurable functions with

f(x) + g(y) ≤ c(x, y) µ⊗ ν-a.s.

Then there exist versions f̃ = f µ-a.s. and g̃ = g ν-a.s. such that

f̃(x) + g̃(y) ≤ c(x, y) for all (x, y) ∈ X × Y.

Proof. Suppose first that f, g are continuous. If f(x) + g(y) > c(x, y) for some
(x, y) ∈ X × Y, the same inequality holds on a neighborhood Br(x)×Br(y), which
then must be µ ⊗ ν-null by the assumption. That is, (x, y) /∈ sptµ × spt ν. In

conclusion, we can set f̃ = f on sptµ and f̃ = −∞ outside sptµ, and similarly
for g̃.

In general, Lusin’s theorem yields an increasing sequence of closed sets An ⊂ X
such that f |An is continuous and µ(Acn) ≤ 1/n. Let µn = µ|An and A′n = sptµn.
Defining analogously B′n ⊂ Y, the above argument shows that f(x) + g(y) ≤ c(x, y)
on A′n × B′n. The same inequality then holds on the product of ∪nA′n and ∪nB′n,

and these sets have full measure. It remains to set f̃ = f on ∪nA′n and f̃ = −∞ on
the complement, and similarly for g̃. �

3. Proof of the Main Result

We can now report the proof of Theorem 1.1. To simplify the notation, let us
agree that an index n always refers to an object associated with ε = εn; for instance,
fn = fεn and gn = gεn . Moreover, subsequences are not relabeled.

Steps 1–5 below establish the a.s. convergence of fn and gn along a subsequence.
The final Step 6 shows that a.s. convergence also implies L1-convergence, and that
limits are Kantorovich potentials.

Proof of Theorem 1.1. Let εn → 0. In addition, we fix a strictly decreasing sequence
δk → 0 with δk < 1/2.

Step 1. For each k, n ∈ N, Lemma 2.3 yields sets

An(δk) ⊆ Xcpt(δk) ⊆ X and Bn(δk) ⊆ Ycpt(δk) ⊆ Y
such that

µ(An(δk)) ≥ 1− δk and ν(Bn(δk)) ≥ 1− δk
as well as

|fn(x1)− fn(x2)| ≤ sup
y∈Ycpt(δk)

|c(x1, y)− c(x2, y)| − εn log(1− δk)

≤ sup
y∈Ycpt(δk)

|c(x1, y)− c(x2, y)|+ εn log(2)
(3.1)

for x1, x2 ∈ An(δk) and similarly

|gn(y1)− gn(y2)| ≤ sup
x∈Xcpt(δk)

|c(x, y1)− c(x, y2)|+ εn log(2)

for y1, y2 ∈ Bn(δk). For each n, we can assume that the sequences (Xcpt(δk))k and
(Ycpt(δk))k are increasing, and consequently also that (An(δk))k and (Bn(δk))k are
increasing.
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Step 2. Define

d̃k(x1, x2) := sup
y∈Ycpt(δk)

|c(x1, y)− c(x2, y)| .

It is elementary to verify that d̃k is a pseudometric on X . Using (3.1) and Lemma 2.4
with γ = εn log(2), there exists an extension fkn satisfying fkn = fn on An(δk) and∣∣∣fkn(x1)− fkn(x2)

∣∣∣ ≤ d̃k(x1, x2) + εn log(2), x1, x2 ∈ X .(3.2)

Similarly, there exists an extension gkn for gn with an analogous property.

Step 3. We now vary n, while still keeping k fixed, and our aim is to construct a
subsequential limit fk = limn→∞ f

k
n µ-a.s. We first argue that (fkn)n∈N is pointwise

bounded from above. Indeed, after taking another subsequence if necessary, there
exists x0 ∈ sptµ such that x0 ∈ An(δk) for all n and fn(x0) ≤

∫
c(x0, y) ν(dy) <∞;

cf. Lemma 2.1. Thus fn(x0)+ is bounded uniformly in n. On the other hand,∫
f+
n (x)µ(dx) ≤

∫
c(x, y) ν(dy)µ(dx) < ∞, and as

∫
fn(x)µ(dx) ≥ 0 by (2.1), it

follows that
∫
f−n (x)µ(dx) is bounded. In view of (3.1), we obtain that fn(x0)− is

bounded uniformly in n. This shows that fn(x0) is bounded, and then so is fkn(x0).
By (3.2), it follows that fkn(x) is bounded uniformly in n, for any x ∈ X , as claimed.

Define

ωk(x, r) = sup
d(x,x′)≤r

d̃k(x, x
′) ≡ sup

y∈Ycpt(δk),d(x,x′)≤r

∣∣c(x, y)− c(x′, y)
∣∣ .

Clearly d̃(x1, x2) ≤ ω(x1, d(x1, x2)), and ωk is a modulus of continuity as noted
above. In particular, the conditions of Lemma 2.2 are satisfied for the sequence
(fkn)n∈N with ω := ωk and hn := εn log(2). After passing to a subsequence, we
thus obtain an ωk-continuous function fk such that fkn → fk uniformly on compact
subsets. After passing to another subsequence, we similarly obtain a limit gk for gkn.

Recall that for fixed n, the sets An(δk) are increasing in k, and ∪kAn(δk) has

full µ-measure. As a consequence, fkn = fk
′

n = fn on An(δk) for all k′ ≥ k, and
a diagonal argument yields a subsequence along which limn→∞ f

k
n = fk µ-a.s. for

all k. Similarly for gkn, and we may assume in what follows that limn→∞ f
k
n = fk

µ-a.s. and limn→∞ g
k
n = gk ν-a.s. for all k.

Step 4. In this step we show that (fk) converges µ-a.s., after passing to a subse-
quence. Fix γ > 0 and choose k0 such that δk0 ≤ γ. For all k, k′ ≥ k0 and all n, we
have

|fk(x)− fk′(x)| ≤ |fk(x)− fkn(x)|+ |fkn(x)− fk′n (x)|+ |fk′n (x)− fk′(x)|.(3.3)

Recalling also fkn = fk
′

n = fn on An(δk0) and µ((An(δk0))c) ≤ δk0 ≤ γ, we deduce∫
[|fk(x)− fk′(x)| ∧ 1]µ(dx)

≤
∫
An(δk0 )

(
[|fk(x)− fkn(x)| ∧ 1] + [|fk′n (x)− fk′(x)| ∧ 1]

)
µ(dx) + γ.
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Sending n → ∞ and using the result of Step 3, dominated convergence allows us
to conclude that

∫
|fk(x) − fk

′
(x)| ∧ 1µ(dx) ≤ γ; that is, (fk) is Cauchy in µ-

probability. In particular, there exists a limit f in µ-probability, and after taking a
subsequence, the limit also holds µ-a.s. Similarly, limk g

k = g ν-a.s.

Step 5. Next, we show that the potentials fn, gn converge a.s. to the same limits
f, g, after taking another subsequence. Given γ > 0, Step 4 implies that for a.e.
x ∈ X there exists k0(x) such that |fk(x) − f(x)| ≤ γ/3 and δk ≤ γ for k ≥ k0(x).
As limn f

k
n = fk µ-a.s., it follows for k ≥ k0(x) and for n sufficiently large that

|fn(x)− f(x)| ≤ |fn(x)− fkn(x)|+ |fkn(x)− fk(x)|+ |fk(x)− f(x)|

≤ |fn(x)− fkn(x)|+ |fkn(x)− fk(x)|+ γ/3

≤ |fn(x)− fkn(x)|+ γ/2.

Recalling that fn(x) = fkn on An(δk), we conclude

lim
n→∞

µ ({x : |fn(x)− f(x)| ≥ γ}) ≤ lim sup
n→∞

µ ((An(δk))
c) ≤ δk ≤ γ;

that is, fn → f in µ-probability. Taking another subsequence, we have limn fn = f
µ-a.s. Similarly, we obtain limn gn = g. Lemmas 2.5 and 2.6 show that after
modifying f, g on nullsets, we have

f(x) + g(y) ≤ c(x, y), (x, y) ∈ X × Y.(3.4)

Step 6. Let C1(x) :=
∫
c(x, y) ν(dy) and C2(y) :=

∫
c(x, y)µ(dx). In view of

Lemma 2.1 we have

(3.5) fn, f ≤ C1 ∈ L1(µ), gn, g ≤ C2 ∈ L1(ν).

Using also H(π|µ ⊗ ν) ≥ 0, the duality Iε = Sε from the Introduction, Fatou’s
lemma and (3.4), we obtain

inf
π∈Π(µ,ν)

∫
c(x, y)π(dx, dy) ≤ lim

n→∞

(
inf

π∈Π(µ,ν)

∫
c(x, y)π(dx, dy) + εnH(π|µ⊗ ν)

)
= lim

n→∞

(∫
fn(x)µ(dx) +

∫
gn(y) ν(dy)

)
≤
∫

lim sup
n→∞

fn(x)µ(dx) +

∫
lim sup
n→∞

gn(y) ν(dy)

=

∫
f(x)µ(dx) +

∫
g(y) ν(dy)

= inf
π∈Π(µ,ν)

∫
[f(x) + g(y)]π(dx, dy)

≤ inf
π∈Π(µ,ν)

∫
c(x, y)π(dx, dy).
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In particular, limε Sε =
∫
f(x)µ(dx)+

∫
g(y) ν(dy) = S0. Using again (3.5), Fatou’s

lemma then also shows that

S0/2 = lim
ε→0

Sε/2 = lim
n→∞

∫
fn(x)µ(dx) ≤

∫
f(x)µ(dx)

and similarly S0/2 ≤
∫
g(y) ν(dy). We conclude that∫
f(x)µ(dx) =

∫
g(y) ν(dy) = S0/2

and hence the separate convergence

lim
n→∞

∫
fn(x)µ(dx) =

∫
f(x)µ(dx), lim

n→∞

∫
gn(x)µ(dx) =

∫
g(x)µ(dx).

In view of (3.5) and the a.s. convergence fn → f , applying Scheffé’s lemma to the
nonpositive sequence fn−C1 allows us to conclude that fn → f in L1(µ). Similarly,
gn → g in L1(ν). �

The proof of Theorem 1.1 simplifies substantially if c is uniformly continuous
(and in particular if X and Y are compact). Moreover, the conclusion is stronger
in this case: the almost-sure convergence of fn → f and gn → g can be replaced
by uniform convergence on compact subsets. For the remainder of this section, let
ω : R+ → R+ be a modulus of continuity as defined before Lemma 2.2.

Lemma 3.1. Suppose that c is uniformly ω-continuous in both variables. Then the
potentials fε, gε are uniformly ω-continuous, for any ε > 0.

Proof. Let x1, x2 ∈ X satisfy fε(x1) ≥ fε(x2). Then

|fε(x1)− fε(x2)|

= ε log

∫
e
gε(y)−c(x2,y)

ε ν(dy)− ε log

∫
e
gε(y)−c(x1,y)

ε ν(dy)

= ε log

∫
e
c(x1,y)−c(x2,y)+gε(y)−c(x1,y)

ε ν(dy)− ε log

∫
e
gε(y)−c(x1,y)

ε ν(dy)

≤ ε log

(
e

supy∈Y |c(x1,y)−c(x2,y)|
ε

∫
e
gε(y)−c(x1,y)

ε ν(dy)

)
− ε log

∫
e
gε(y)−c(x1,y)

ε ν(dy)

= sup
y∈Y
|c(x1, y)− c(x2, y)| ≤ ω(d(x1, x2)).

The case fε(x1) ≤ fε(x2) follows by symmetry and the proof for gε is analogous. �

Proposition 3.2. Let c be uniformly ω-continuous in both variables and εn → 0.
After passing to a subsequence, fεn → f and gεn → g uniformly on compact subsets,
for some uniformly ω-continuous Kantorovich potentials f and g.

Proof. The functions (fn) are w-equicontinuous by Lemma 3.1, hence (fn) is point-
wise bounded as soon as it is bounded at one point x ∈ X . By Lemma 2.1,
fn(x) ≤

∫
c(x, y) ν(dy) <∞ for µ-a.e. x, so that (f+

n ) is pointwise bounded. On the
other hand,

∫
f+
n (x)µ(dx) ≤

∫
c(x, y) ν(dy)µ(dx) < ∞, and as

∫
fn(x)µ(dx) ≥ 0

by (2.1), it follows that
∫
f−n (x)µ(dx) is bounded. By equicontinuity, it follows that
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(f−n ) must be bounded at any point x ∈ sptµ, and then at all points. Similarly
for (gn), and now the claimed convergence to some uniformly ω-continuous func-
tions f, g follows from the Arzelà–Ascoli theorem. To see that f, g are Kantorovich
potentials, we argue as in Step 6 of the proof of Theorem 1.1. �

4. Relation to a Large Deviations Principle

In this section we discuss the connection between convergence of potentials (The-
orem 1.1) and a large deviations principle (LDP) along the lines proposed in [3,
Theorem 1.1]. Roughly speaking, the LDP describes the exponential rate of decay
of πε(E) for a set E outside the support of π0 := limε→0 πε, whereas the convergence
of potentials yields the exponential rate of decay of the density πε/d(µ⊗ν) at points
outside of {f + g = c}. Clearly, these statements are closely related, and as seen
below, they are equivalent if X ,Y are compact. In the general case, however, neither
result implies the other in an obvious way.

Throughout this section, we fix a sequence εn → 0 and set (fn, gn) := (fεn , gεn),
as in Section 3. Given a measurable function I on X ×Y, we denote by ess inf I the
essential infimum wrt. µ⊗ν, defined as ess inf I = inf{α ∈ R : (µ⊗ν){I < α} > 0}.

Proposition 4.1. Suppose that f := limn fn exists in µ-probability and g := limn gn
exists in ν-probability. Define I(x, y) := c(x, y)−f(x)−g(y), then for any measurable
set E ⊂ X × Y,

lim inf
n→∞

εn log πεn(E) ≥ − ess inf
(x,y)∈E

I(x, y).(4.1)

If the convergence of (fn, gn) is a.s. uniform on E; i.e.,

‖(fn, gn)1E − (f, g)1E‖L∞(µ⊗ν) → 0,

then E also satisfies the matching bound

lim sup
n→∞

εn log πεn(E) ≤ − ess inf
(x,y)∈E

I(x, y).(4.2)

If X ,Y are compact, that is the case for all sets E.

Proof. Let E ⊂ X × Y be measurable, α := − ess inf(x,y)∈E I(x, y) and γ > 0. By
the definition of α, the set

Eγ := {(x, y) ∈ E : f(x) + g(y)− c(x, y) ≥ α− 2γ}

satisfies β := (µ ⊗ ν)(Eγ)/2 > 0. In view of the assumed convergence of (fn, gn),
there exists n0 such that (µ⊗ ν){|(fn, gn)− (f, g)| > γ} ≤ β for n ≥ n0, so that

Eγn := {(x, y) ∈ Eγ : fn(x) + gn(y)− c(x, y) ≥ α− γ}

satisfies (µ⊗ ν)(Eγn) ≥ β for all n ≥ n0. Thus

πεn(E) ≥ πεn(Eγn) =

∫
Eγn

e
fn(x)+gn(y)−c(x,y)

εn µ(dx) ν(dy) ≥ βe
α−γ
εn
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for n ≥ n0 and then lim infn→∞ εn log πεn(E) ≥ α− γ. As γ > 0 was arbitrary, the
lower bound (4.1) follows. Turning to the second claim, note that

εn log πεn(E) = εn log

(∫
E
e
fn(x)+gn(y)−c(x,y)

εn µ(dx) ν(dy)

)
≤ ess sup

(x,y)∈E
(fn(x) + gn(y)− c(x, y)) .

If ‖(fn, gn)1E − (f, g)1E‖∞ → 0, it readily follows that

lim
n→∞

εn log πεn(E) ≤ − ess inf
(x,y)∈E

I(x, y),

as desired. If X ,Y are compact, Proposition 3.2 and the assumed convergence of
the potentials in probability imply that ‖(fn, gn)− (f, g)‖∞ → 0 (without taking a
subsequence), so that the above applies to any measurable set E. �

Remark 4.2. (a) In Proposition 4.1 the rate is stated through an essential infimum,
consistent with the fact that E can be irregular and f, g are considered as determined
only up to nullsets. In many situations it is known that Kantorovich potentials admit
a continuous version, for instance by c-concavity. If moreover E is suitably regular
(e.g., open and contained in sptµ× spt ν), the essential infimum can be written as
an infimum.

(b) In the case of compactly supported marginals, an alternative proof of Propo-
sition 4.1 can be given using Bryc’s inverse to Varadhan’s Integral Lemma; cf. [13,
Theorem 4.4.2]. That proof, however, is longer than the direct argument given
above. In connection with classical large deviations theory, we note that the se-
quence (πεn) fails to be exponentially tight whenever the marginals are not com-
pactly supported: exponential tightness implies, in particular, that any limit π0 is
compactly supported, but as π0 ∈ Π(µ, ν), the same then follows for µ, ν.

If the Kantorovich potentials (f, g) are unique, Theorem 1.1 implies that the first
condition in Proposition 4.1 is satisfied.

Bounds similar to (4.1) and (4.2) are stated in [3, Theorem 1.1] for open and
compact sets, respectively. While weak convergence πεn → π0 of the couplings
is assumed, it avoids any conditions on X ,Y, the integrability of c, or even the
finiteness of the value Iε in (1.2). Such a setting does seem outside the scope of the
methods used here.

In general, if convergence of potentials is not known a priori, Proposition 4.1
implies non-matching bounds by maximizing or minimizing over all potentials as
follows. Given a family (Iλ) of measurable functions, I∗ := ess supλ Iλ denotes
the essential supremum wrt. µ ⊗ ν in the sense of probability theory.2 Similarly,
ess infλ Iλ is the essential infimum.

2I.e., I∗ is the (a.s. unique) measurable function satisfying I∗ ≥ Iλ a.s. for all λ and I∗ ≤ J
a.s. for any J satisfying J ≥ Iλ a.s. for all λ. In other words, I∗ is the supremum in the lattice of
measurable functions equipped with the a.s. order.
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Corollary 4.3. Define I∗ := ess supf,g If,g, where If,g(x, y) := c(x, y)− f(x)− g(y)
and the supremum is taken over all Kantorovich potentials (f, g). Similarly, define
I∗ := ess inff,g If,g. Then

lim inf
n→∞

εn log πεn(E) ≥ − ess inf
(x,y)∈E

I∗(x, y)(4.3)

for any measurable set E ⊂ X × Y. If X ,Y are compact, then also

lim sup
n→∞

εn log πεn(E) ≤ − ess inf
(x,y)∈E

I∗(x, y).(4.4)

Proof. Passing to a subsequence, we may assume that the lim inf on the left-hand
side is a limit. After passing to another subsequence, Theorem 1.1 yields that
the Schrödinger potentials (fn, gn) converge in L1 to some Kantorovich poten-
tials (f, g), and then Proposition 4.1 applies to (f, g). As ess inf(x,y)∈E If,g(x, y) ≤
ess inf(x,y)∈E I

∗(x, y), the lower bound (4.3) follows. The proof of (4.4) is analo-
gous. �

Remark 4.4. The lower bound (4.3) is quite general, and seems to be novel. Ex-
cept in the case of uniqueness for the Kantorovich potentials, no analogue is stated
in [3]. On the other hand, the upper bound (4.4) is similar to the bound in [3,
Theorem 1.1 (a)]. The latter is stated under the condition that πεn converges but
without any conditions on X ,Y.

The next result is a partial converse to Proposition 4.1. It suggests that if an
LDP holds, then the Schrödinger potentials must converge (without passing to a
subsequence) and the rate function must be determined by the limiting potentials.
We prove this in the compact case via Varadhan’s Integral Lemma, but we conjecture
that the assertions remains valid in some generality.

Proposition 4.5. Let X ,Y be compact and suppose the assertion of the LDP [3,
Theorem 1.1] holds for some function I : X × Y → R+; that is,

lim sup
n→∞

εn log πεn(C) ≤ − inf
(x,y)∈C

I(x, y) for C ⊂ X × Y compact,(4.5)

lim inf
n→∞

εn log πεn(U) ≥ − inf
(x,y)∈U

I(x, y) for U ⊂ sptµ× spt ν open.(4.6)

Then
I(x, y) = c(x, y)− f(x)− g(y), (x, y) ∈ sptµ× spt ν

for some Kantorovich potentials (f, g), and

f = lim
n→∞

fn uniformly on sptµ, g = lim
n→∞

gn uniformly on spt ν.

Proof. As X ×Y is compact, c is uniformly continuous and then fn, gn are uniformly
equicontinuous; cf. Lemma 3.1. Fix (x0, y0) ∈ sptµ× spt ν. Equicontinuity implies
that given γ > 0 there exists r, n0 > 0 such that for all n ≥ n0,

|I(x0, y0) + fn(x0) + gn(y0)− c(x0, y0)− Jn(r)| ≤ γ for

Jn(r) := εn log

(∫
Br(x0,y0)

e
I(x,y)+fn(x)+gn(y)−c(x,y)

εn µ(dx) ν(dy)

)
.
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To show limn→∞[fn(x0)+gn(y0)] = c(x0, y0)−I(x0, y0), it therefore suffices to prove
for all r > 0 that

lim
n→∞

Jn(r) = 0.(4.7)

Next, we argue that I must be continuous. Indeed, after passing to a subsequence,
Proposition 4.1 shows that I must be of the form I = c− f̃ − g̃ on sptµ× spt ν, for
some (necessarily uniformly continuous) Kantorovich potentials (f̃ , g̃). Moreover,
we may assume that X = sptµ and Y = spt ν, by shrinking the marginal spaces if
necessary. In brief, the LDP (4.5), (4.6) then holds for all closed sets C and open
sets U in X×Y with the “good” rate function I. In this context, Varadhan’s Integral
Lemma [13, Theorem 4.3.1] states that

lim
n→∞

εn log

(∫
e
φ(x,y)
εn πεn(dx, dy)

)
= sup

(x,y)∈X×Y
(φ(x, y)− I(x, y))(4.8)

for any continuous function φ : X × Y → R that satisfies the moment condition

lim sup
n→∞

εn log

(∫
e
γφ(x,y)
εn πεn(dx, dy)

)
<∞

for some γ > 1. As the continuous function I is bounded on the compact space
X × Y, this holds in particular for φ := I, for any γ > 1. Let (x0, y0) ∈ X × Y and
r > 0. Using (4.8) for φ = I,

lim sup
n→∞

Jn(r) ≤ lim sup
n→∞

εn log

(∫
e
I(x,y)
εn πεn(dx, y)

)
= sup

(x,y)∈X×Y
(I(x, y)− I(x, y)) = 0.

To show the converse inequality, consider a bounded continuous function φ with

φ(x0, y0) = I(x0, y0), φ ≤ I on Br(x0, y0), φ = −1 on Bc
r(x0, y0).

Then∫
Br(x0,y0)

e
I(x,y)+fn(x)+gn(y)−c(x,y)

εn µ(dx) ν(dy) ≥
∫
Br(x0,y0)

e
φ(x,y)
εn πεn(dx, dy)

≥
∫
e
φ(x,y)
εn πεn(dx, dy)− e

−1
εn

and thus

lim inf
n→∞

Jn(r) ≥ lim inf
n→∞

εn log

(∫
e
φ(x,y)
εn πεn(dx, dy)

)
= sup

(x,y)∈X×Y
(φ(x, y)− I(x, y)) = 0,

where we have used (4.8). This completes the proof of (4.7) and thus shows that
limn→∞[fn(x0) + gn(y0)] = c(x0, y0)− I(x0, y0) for (x0, y0) ∈ sptµ× spt ν. In view
of the uniform equicontinuity, the convergence is even uniform on that set.

On the other hand, we have already shown in Proposition 3.2 that fn → f and
gn → g uniformly, after passing to a subsequence, for some Kantorovich potentials
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f, g. Thus c − I = f + g on sptµ × spt ν. It remains to argue that the original
sequences fn, gn converge to f, g. Indeed, the rectangular form of S := sptµ× spt ν
implies that if f(x)+g(y) = f̃(x)+ g̃(y) on S, then f̃ = f+a and g̃ = g−a for some
a ∈ R. Recalling our symmetric normalization for potentials, the claim follows. �

5. Varying Costs

In this section we extend Theorem 1.1 to cost functions that vary with ε. The
continuous cost c will be used for the limiting Monge–Kantorovich transport prob-
lem, as before. In addition, we introduce a family of cost functions cε : X ×Y → R+

for the regularized problems with ε > 0. These functions are merely required to be
measurable.

On the one hand, we are interested in the stability of Theorem 1.1 with respect
to the cost function. On the other hand, this section is motivated by the large
deviations perspective on Schrödinger bridges; cf. [19]. Recall that

(5.1) πε = arg min
π∈Π(µ,ν)

H(π|Rε) for
dRε

d(µ⊗ ν)
= αεe

−c/ε

where αε is the normalizing constant. Theorem 1.1 and its counterparts in Section 4
can be interpreted as consequences of the large deviations of (Rε) as ε → 0, whose
rate is the function c. More generally, this rate function is shared by arbitrary

measures (R′ε) with −ε log dR′ε
d(µ⊗ν) → c, and one may wonder if they give rise to a

similar result. This convergence is equivalent to setting dR′ε
d(µ⊗ν) = α′εe

−cε/ε for some

function cε with cε → c, and returning to the language of entropic optimal transport,
it corresponds to the cost cε under consideration.

In what follows, we assume a common bound

(5.2) cε ≤ c̄ for all ε > 0

for some function c̄(x, y) = c̄1(x) + c̄2(y) with c̄1 ∈ L1(µ) and c̄2 ∈ L1(ν), and that

(5.3) cε → c uniformly on compact subsets as ε→ 0.

The modified entropic optimal transport problem then reads

(5.4) Iε := inf
π∈Π(µ,ν)

∫
X×Y

cε(x, y)π(dx, dy) + εH(π|µ⊗ ν).

As before, it has a unique solution πε, and we introduce the Schrödinger potentials
through the formula

(5.5)
dπε

d(µ⊗ ν)
(x, y) = exp

(
fε(x) + gε(y)− cε(x, y)

ε

)
and the symmetric normalization (1.4). The Monge–Kantorovich problem and its
potentials are still based on the continuous cost c. While not required for the
regularized problem with ε > 0, continuity of costs is important for ε = 0, including
for the validity of Theorem 1.1 (see Example 5.2).
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Proposition 5.1. Let (5.2), (5.3) hold. Then the assertion of Theorem 1.1 extends
to the setting (5.4), (5.5) of variable costs (cε).

Proof. We only indicate the necessary changes to the proof of Theorem 1.1. First of
all, we recall that the auxiliary results in Section 2 did not require continuity. Next,
we go through the steps in Section 3.

Step 1. We change (3.1) to

|fn(x1)− fn(x2)| ≤ sup
y∈Ycpt(δk)

|cn(x1, y)− cn(x2, y)| − εn log(1− δk)

≤ sup
y∈Ycpt(δk)

|c(x1, y)− c(x2, y)|+ εn log(2) + ηn,k

where, due to the uniform convergence of cε on the compact set Xcpt(δk)×Ycpt(δk),
the constant ηn,k satisfies limn ηn,k = 0 (for fixed k). The subsequent display for gn
is changed analogously.

Step 2. Instead of (3.2) we now have∣∣∣fkn(x1)− fkn(x2)
∣∣∣ ≤ d̃k(x1, x2) + εn log(2) + ηn,k, x1, x2 ∈ X .

Step 3. In the arguments for the pointwise boundedness, simply replace c by c̄.
In the application of Lemma 2.2, replace hn := εn log(2) by hn,k := εn log(2) + ηn,k.
Note that the dependence on k does not cause any difficulty, as k is fixed and
limn hn,k = 0 holds for each k.

Steps 4,5. No changes are necessary in these steps; note that (3.4) is based solely
on the limiting cost function c which is still assumed to be continuous.

Step 6. Define C1(x) :=
∫
c̄(x, y) ν(dy) = c̄1(x)+‖c2‖L1(ν) and similarly C2(y) :=

c̄2(y) + ‖c1‖L1(µ). Then we again have (3.5). For the subsequent display, we now
need to argue that

inf
π∈Π(µ,ν)

∫
c(x, y)π(dx, dy) ≤ lim

n→∞
inf

π∈Π(µ,ν)

∫
cn(x, y)π(dx, dy).(5.6)

Indeed, given γ > 0, we can find a compact set K = K1 ×K2 ⊂ X × Y with∫
Kc

c̄(x, y)π(dx, dy) ≤
∫
Kc

1

c̄1(x)µ(dx) +

∫
Kc

2

c̄2(y) ν(dy) < γ.

As cn → c uniformly on K, we also have |c− cn| ≤ γ on K for n ≥ n0. Thus∣∣∣∣ inf
π∈Π(µ,ν)

∫
c dπ − inf

π∈Π(µ,ν)

∫
cn dπ

∣∣∣∣ ≤ sup
π∈Π(µ,ν)

∫
|c− cn| dπ

≤ sup
π∈Π(µ,ν)

∫
K
|c− cn| dπ +

∫
Kc

c̄ dπ ≤ 2γ

for n ≥ n0. This implies (5.6), even with equality, and the remainder of the proof
holds as stated without further changes. �

The following simple example shows that continuity of c is important for the
validity of Theorem 1.1.
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Example 5.2. Let µ = ν be uniform on X = Y = [0, 1] and c(x, y) = 1x 6=y.
Then the Schrödinger potentials are fε = gε ≡ 1/2 for all ε > 0 but the (unique)
Kantorovich potentials are f0 = g0 ≡ 0.

To put the example in a broader context, note that the entropic optimal transport
problem (1.2) with ε > 0 remains unchanged if the cost function is altered on a
µ⊗ ν-nullset, whereas the Monge–Kantorovich problem may very well change. If c
is measurable and ĉ is a continuous function with ĉ = c, Theorem 1.1 thus implies
that the entropic problem (1.2) with cost c converges to the Monge–Kantorovich
problem with cost ĉ for ε→ 0. Example 5.2 is a particular case with c(x, y) = 1x 6=y
and ĉ ≡ 1. For more general cost functions, one may conjecture that (1.2) converges
to some form of upper envelope of the Monge–Kantorovich problem; we leave this
question for future research.

6. Multimarginal Optimal Transport

Instead of two marginals µ and ν, we can generalize to an arbitrary number N ∈ N
of marginals. Consider Polish probability spaces (Xi, µi) for i = 1, . . . , N and let

µ(dx1, . . . , dxN ) := µ1(dx1)⊗ · · · ⊗ µN (dxN )

denote the product measure. Moreover, let c : X1 × · · · × XN → R+ be continuous
with

∫
c dµ < ∞. The entropic optimal transport problem generalizes directly to

the set π ∈ Π(µ1, . . . , µN ) of couplings,

(6.1) Iε := inf
π∈Π(µ1,...,µN )

∫
c π + εH(π|µ),

and has a unique solution πε given by

(6.2)
dπε
dµ

(x1, . . . , xN ) = exp

(
f1
ε (x1) + · · ·+ fNε (xN )− c(x1, . . . , xN )

ε

)
with f iε ∈ L1(µi). For ε = 0, we again recover the multimarginal optimal transport
problem, whose dual now reads

S0 := sup
f i∈L1(µi),

∑
i f
i(xi)≤c(x1,...,xN )

N∑
i=1

∫
f i(xi)µi(dxi).(6.3)

We again normalize all potentials symmetrically. Extending Theorem 1.1, we have
the following result.

Theorem 6.1. Let (f1
ε , . . . , f

N
ε ) be the unique Schrödinger potentials for ε > 0.

(a) Given εn → 0, there is a subsequence (εk) such that f iεk converges in L1(µi),
for all i = 1, . . . , N .

(b) If limn f
i
εn = f i µi-a.s. for all i = 1, . . . , N , then (f1, . . . , fN ) are Kan-

torovich potentials and the convergence also holds in L1(µi).

If the Kantorovich potentials (f1
0 , . . . , f

N
0 ) for (6.3) are unique, then it follows that

limε→0 f
i
ε = f i0 in L1(µi) for i = 1, . . . , N .
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Proof. The arguments are exactly the same as in the proof of Theorem 1.1, and
therefore omitted. �
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[18] C. Léonard. From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct.
Anal., 262(4):1879–1920, 2012.
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